Uncovering Smartphone Brand Strategies through Specification-Based Clustering and Classification

Authors

  • Abdul Karim Universitas Labuhanbatu
  • Andi Ernawati Universitas Pembangunan Panca Budi

DOI:

https://doi.org/10.58369/biit.v4i1.167

Abstract

In an increasingly saturated smartphone market, brand differentiation through technical specifications has become a core strategy for attracting diverse consumer segments. This study proposes a machine learning approach to uncover underlying brand strategies by leveraging smartphone specifications and market pricing across multiple regions. We utilize unsupervised clustering algorithms (K-Means, DBSCAN) to segment devices based on technical features, followed by supervised classification models (Random Forest, XGBoost) to identify and interpret brand-driven design strategies. The dataset comprises smartphones released in 2024–2025, including attributes such as RAM, camera specifications, processor type, battery capacity, and launch prices in Pakistan, India, China, USA, and Dubai. Our findings reveal distinct clusters that align with different pricing tiers and show clear brand positioning patterns. Feature importance analysis using SHAP highlights battery capacity, screen size, and processor type as critical variables influencing brand classification. This study provides valuable insights for both manufacturers and consumers in understanding competitive product strategies within the global smartphone market.

References

A. Kapoor, A. Sahay, N. C. Singh, V. S. Chandrasekhar Pammi, and P. Banerjee, “The neural correlates and the underlying processes of weak brand choices,” J Bus Res, vol. 154, p. 113230, Jan. 2023, doi: 10.1016/J.JBUSRES.2022.07.056.

A. Kapoor, A. Sahay, N. C. Singh, V. S. Chandrasekhar Pammi, and P. Banerjee, “The neural correlates and the underlying processes of weak brand choices,” J Bus Res, vol. 154, p. 113230, Jan. 2023, doi: 10.1016/J.JBUSRES.2022.07.056.

R. A. Hasan, H. Irshaid, F. Alhomaidat, S. Lee, and J. S. Oh, “Transportation Mode Detection by Using Smartphones and Smartwatches with Machine Learning,” KSCE Journal of Civil Engineering, vol. 26, no. 8, pp. 3578–3589, Aug. 2022, doi: 10.1007/S12205-022-1281-0.

A. L. Potzel, C. Gar, J. Seissler, and A. Lechner, “A Smartphone App (TRIANGLE) to Change Cardiometabolic Risk Behaviors in Women Following Gestational Diabetes Mellitus: Intervention Mapping Approach,” JMIR Mhealth Uhealth, vol. 9, no. 5, May 2021, doi: 10.2196/26163.

S. Moro, G. Pires, P. Rita, and P. Cortez, “A cross-cultural case study of consumers’ communications about a new technological product,” J Bus Res, vol. 121, pp. 438–447, Dec. 2020, doi: 10.1016/J.JBUSRES.2018.08.009.

M. Ueki, “A deflation-adjusted Bayesian information criterion for selecting the number of clusters in K-means clustering,” Comput Stat Data Anal, vol. 209, p. 108170, Sep. 2025, doi: 10.1016/J.CSDA.2025.108170.

J. Lu, T. Luo, and K. Li, “A forward k-means algorithm for regression clustering,” Inf Sci (N Y), vol. 711, p. 122105, Sep. 2025, doi: 10.1016/J.INS.2025.122105.

Y. Dai, L. Yang, and Y. Cao, “Long baseline underwater source localization based on deep K-Means++ clustering in complex underwater environments,” Digit Signal Process, vol. 164, p. 105281, Sep. 2025, doi: 10.1016/J.DSP.2025.105281.

J. Li, L. Wang, S. Fu, W. Fu, and X. Pan, “Self-labeled framework with semi-supervised ball K-means clustering-based synthetic example generation for semi-supervised classification in industrial applications,” Eng Appl Artif Intell, vol. 150, p. 110528, Jun. 2025, doi: 10.1016/J.ENGAPPAI.2025.110528.

A. A. Hussein, H. N. Abdulrazzak, and A. S. Ali, “MANET highly efficient clustering technique based on coverage k-means algorithm,” Egyptian Informatics Journal, vol. 30, p. 100672, Jun. 2025, doi: 10.1016/J.EIJ.2025.100672.

P. Bíró, B. B. Bálint, T. Novák, and M. Erdélyi, “Cluster parameter-based DBSCAN maps for image characterization,” Comput Struct Biotechnol J, vol. 27, pp. 920–927, Jan. 2025, doi: 10.1016/J.CSBJ.2025.02.037.

R. Ma, J. Sha, S. Zhang, D. Zhu, W. Kang, and J. Liu, “Fast grouping fusion method of dual carbon monitoring data based on DBSCAN clustering algorithm,” Results in Engineering, vol. 26, p. 105057, Jun. 2025, doi: 10.1016/J.RINENG.2025.105057.

Z. Wu, X. Fan, G. Bian, Y. Liu, X. Zhang, and Y. Q. Chen, “Short-term wind power forecast with turning weather based on DBSCAN-RFE-LightGBM,” Renew Energy, vol. 251, p. 123217, Oct. 2025, doi: 10.1016/J.RENENE.2025.123217.

P. Zhang, J. Duan, C. Wang, X. Li, J. Su, and Q. Shang, “Predicting response to anti-VEGF therapy in neovascular age-related macular degeneration using random forest and SHAP algorithms,” Photodiagnosis Photodyn Ther, p. 104635, May 2025, doi: 10.1016/J.PDPDT.2025.104635.

H. Zhu, G. Liu, X. Gao, S. Wang, and C. Jiang, “A Random Forest-Based Combinatorial Optimization Model for Altitude-Dependent Vertical Correction of Precipitable Water Vapor in China,” Advances in Space Research, May 2025, doi: 10.1016/J.ASR.2025.05.039.

X. Wei et al., “Study on Prediction Model of Nitrogen Oxide Concentration in Reprocessing Plant Based on Random Forest,” International Journal of Advanced Nuclear Reactor Design and Technology, May 2025, doi: 10.1016/J.JANDT.2025.04.011.

H. Liu et al., “Research on time-domain motion prediction of floating platforms based on XGBoost model,” Ocean Engineering, vol. 332, p. 121393, Jul. 2025, doi: 10.1016/J.OCEANENG.2025.121393.

S. Zhou, “Gwo-ga-xgboost-based model for Radio-Frequency power amplifier under different temperatures,” Expert Syst Appl, vol. 278, p. 127439, Jun. 2025, doi: 10.1016/J.ESWA.2025.127439.

X. Zhao, P.-F. Zhang, Q. Zhao, D. Zhang, Y. Tuerxunmaimaiti, and H. Cao, “A SHAP algorithm-based prediction of the interlaminar shear strength degradation of G/BFRP bars embedded in concrete exposed to marine environment,” Case Studies in Construction Materials, p. e04770, May 2025, doi: 10.1016/J.CSCM.2025.E04770.

Y. Sun and H. Ma, “Interpretable analysis of transformer winding vibration characteristics: SHAP and multi-classification feature optimization,” International Journal of Electrical Power & Energy Systems, vol. 166, p. 110585, May 2025, doi: 10.1016/J.IJEPES.2025.110585.

M. Kruk, “SHAP-NET, a network based on Shapley values as a new tool to improve the explainability of the XGBoost-SHAP model for the problem of water quality,” Environmental Modelling & Software, vol. 188, p. 106403, Apr. 2025, doi: 10.1016/J.ENVSOFT.2025.106403.

R. Hermawati and I. S. Sitanggang, “Web-Based Clustering Application Using Shiny Framework and DBSCAN Algorithm for Hotspots Data in Peatland in Sumatra,” Procedia Environ Sci, vol. 33, pp. 317–323, Jan. 2016, doi: 10.1016/J.PROENV.2016.03.082.

A. Arafa, N. El-Fishawy, M. Badawy, and M. Radad, “RN-SMOTE: Reduced Noise SMOTE based on DBSCAN for enhancing imbalanced data classification,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 8, pp. 5059–5074, Sep. 2022, doi: 10.1016/J.JKSUCI.2022.06.005.

K. S. Pranata, A. A. S. Gunawan, and F. L. Gaol, “Development clustering system IDX company with k-means algorithm and DBSCAN based on fundamental indicator and ESG,” Procedia Comput Sci, vol. 216, pp. 319–327, Jan. 2023, doi: 10.1016/J.PROCS.2022.12.142.

N.-T. Ho et al., “MACHINE LEARNING APPROACH WITH RANDOM FOREST AND SYNTHETIC MINORITY OVER-SAMPLING TECHNIQUE MAY BE OPTIMAL IN NON-INVASIVE EUPLOIDY DETECTION: A PRELIMINARY STUDY,” Fertil Steril, vol. 120, no. 4, p. e107, Oct. 2023, doi: 10.1016/J.FERTNSTERT.2023.08.352.

L. Xu, S. Wen, H. Huang, Y. Tang, Y. Wang, and C. Pan, “Corrosion failure prediction in natural gas pipelines using an interpretable XGBoost model: Insights and applications,” Energy, vol. 325, p. 136157, Jun. 2025, doi: 10.1016/J.ENERGY.2025.136157.

F. Zhang, Z. Zhu, J. Liu, Y. Zhang, M. Xu, and P. Jia, “A novel concentration prediction technique of carbon monoxide (CO) based on beluga whale optimization-extreme gradient boosting (BWO-XGBoost),” J Taiwan Inst Chem Eng, vol. 171, p. 106045, Jun. 2025, doi: 10.1016/J.JTICE.2025.106045.

T. K. Yu, I. C. Chang, S. De Chen, H. L. Chen, and T. Y. Yu, “Predicting potential soil and groundwater contamination risks from gas stations using three machine learning models (XGBoost, LightGBM, and Random Forest),” Process Safety and Environmental Protection, vol. 199, p. 107249, Jul. 2025, doi: 10.1016/J.PSEP.2025.107249.

Downloads

Published

2025-10-08

Issue

Section

Articles